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Abstract— The complex resonant frequency of a superstrate-

Ioaded rectangular microstrip structure is investigated. The study

is performed by using a full-wave analysis and Galerkin’s mo-

ment method. The numerical convergence using sinusoidal basis

functions, with and without considering the edge singularity

to expand the unknown surface current distribution on the

rectangular patch, is discussed. Numerical results for the effects

of superstrata permittivity and thickness on the complex reso-
nant frequency of the rectangular microstrip structure are also
presented.

I. INTRODUCTION

T HE complex resonant frequency problem of a rectangular

microstrip patch has been recently studied in [1], where

an accurate method of determining the resonant frequency of

the rectangular microstrip structure is shown. In this paper, we

extend the study to the case of a superstrate-loaded rectangular

microstrip structure, where the superstrata layer loaded on the

microstrip structure is often imposed by design to protect

the microstrip patch antenna from environmental hazards

[2]–[4]. The study here is also based on a rigorous full-wave

analysis and Galerkin’s moment method [5]. Two different sets

of sinusoidal basis functions are used to expand the unknown

surface current distribution on the rectangular patch, one of

which takes into account the edge singularity condition. The

numerical convergence for these two different sets of basis

functions is discussed in detail. The effects of superstrata

loading on the real and imaginary parts of the complex

resonant frequency of the rectangular microstrip structure are

also presented.

II. THEORETICAL FORMULATION OF THE PROBLEM

The geometry for the superstrate-loaded rectangular mi-

crostrip structure is illustrated in Fig. 1. The patch is located on

a grounded substrate (region 1) of thickness d having relative

permittivity S1. On the top of the substrate is the superstrata

(region 2) of thickness t with relative perrnittivity Sz. Above

the superstrata is free space (region 3) with permittivity so.

The permeability is everywhere assumed to be p,o. For the

analysis of the resonance problem, the transverse electric fields

at z = d are considered. Plane wave solutions proportional to
# are assumed in the following theoretical treatment. The
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transverse electric fields due to the surface currents & andl ~v
on the patch can be expressed as

. exp(jkcx + jkvy) dkz dkv (la)
Coca

/./
Zy=y& _ _m (QwFa + Q@y)

. exp(jk.x + jkvy) dkz dkY (lb)

where F% and FY are the Fourier transforms of J. and Jv,

respectively; Q~~, Q%y, Qy., and Qvy are the elements of the

dyadic Green’s function at z = d for a grounded substrate

covered with a superstrata. These elements are found to be

Qy. = Q..

where

Tm = cos(k2t)[s1k3 cos(kld) + jkl sin(kld)]

[

E.2kl k3
+ j sin(ht) ~b cm(hd) + j ~ sin(hd) 1

T. = COS(k2t)[/CI cos(kld) + jks Sin(hd)]

[
+ j sin(kzi$) ~2~ cos(kld) + jkz sin(kld) 1

D~ = ks cos(k2t) + j$ sin(k2t)

De = cos(kzt) + j$ sin(ht)

k: = E%k; – ~2, 2=1,2,3; &3 = 1.0

pz=p+p k: = (.i7uoe(l .y>

The first subscript on Q represents the field direction while

the second subscript shows the dipole orientation. Since the

resonant frequency is defined to be the frequency at wlhich

the field and the current can sustain themselves without an

external source, the transverse electric fields of (la) and (lb)

must necessarily be zero on the perfectly conducting patch at
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Fig. 1. Rectangular patch in a substrate-superstrate geometry.

resonance, i.e.,
mm

/J (Q..~. + Q.#v) em(jk.x + jkyy) dh dkv = O
-w —w

(2a)
COm

// _@ _m (Qw~~+ Q#y) -p(jkw + jk,v) dkz dkv = o

(2b)

The procedure for solving the above equations is based on

Galerkin’s method [5]. The unknown surface current compo-

nents JZ and Jv, whose Fourier transforms are Fz and Fv,
are expanded in terms of linear combinations of known basis

functions, i.e.,

N

J.(z, y) = ~ a.~$.(x, g) (3a)
n=l

(3b)
qn=l

Substituting the Fourier transforms of (3) into (2) and taking

the symmetric products of the resulting equations with each

basis function, we can have the following homogeneous matrix

equation:

(5a)

I ,
Re @

60k,

Irn(/?)

with edge singularity

Fig. 2. The integration paths in the complex plane for the sinusoidal basis
functions with and without the edge singularity condition.

.QzgFgm(kz, kg) dkx dkv (5b)
mm

z~ =
H

Fvd-kz, –kv)

“iy:i”km kg) db dky (5C)
Wco

2:; =
H

Fvl(–kc, -kg)

6y:Fyi?kz , kv) dkz dky (5d)

k,n=l,2,3,..., N, i,rn=l,2,3,.,0, ~.

Since the quantities Z;;, etc., are functions of complex

frequencies and the existence of nontrivial solutions for am

and bm requires that

det [Z] = O. (6)

where Z is the matrix in (4), the resonance solutions are

satisfied by complex frequencies. In choosing the set of basis

functions for solving (6), the unknown surface current density

on the patch can be expanded by the following sinusoidal

basis functions:

1

“J-

J,m= +(Y+:)]cos[;(z+:)]

1

(7a)

(7b)

(8a)

(8b)
‘,% ‘j_m]_mFd-k=k,)
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Fig.3. Normalized resonant frequency using sinusoidal basis functions witbout the edge aingulsrity versus the substrate thlcknesx c1 = 2.3, a = 1.5 cm,
b = 1 cm, t = O. (a) Real part of resonant frequency. (b) imaginary part of resonant frequency.

The basis functions of (8), unlike those in (7), take into
consideration the edge singularity condition for the tangential
component of the surface current at the edge of the rectangular
patch. The numerical results for the above two different basis
functions are discussed in detail in the next section. The
complex resonant frequencies obtained for typical superstrate-
loaded microstrip structures are also presented.

III. NUMERICAL RMULTS AND DISCUSSION

In the evaluation of the matrix elements of (5), the double
infinite integrals are changed from the (kz, ICV) coordinates to

the polar coordinates (~, rx), i.e.,

00e9

//

‘co

H
2T

dkz dlcv = fidcsd/3. (9)

-m —00 00

It is also noted that the integrands are singular when T. or
T~ is zero. These singularities are poles that correspond to
TE or TM surface waves. Beeause of radiation damping, only
a complex frequency $ = ~~ + j~i can satisfy the sy>tem
equation (6). It is necessary to evaluate the integral in the
complex plane. [n order to inclutle these poles which are
slightly above the real axis (for e~Wtformulation), the integral
is calculated along a straight path above the real axis with
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Fig. 4. Normalized resonant frequency using sinusoidal basis functions with the edge singularity versus the substrate thickness;
b= 1 cmjt=O. (a) Real part ofresonant frequency .(b) Imaginary part of resonant frequency.

c1 = 2.3, u = 1.5 cm,

a height of about llco as shown in Fig. 2. In this case, the

effects of the surface waves are included in the calculation,

and no knowledge of the pole locations is required [6], while

the length of the integration path is decided upon by the

convergence of the numerical results. The CPU time required

to compute the integral depends on the length of the integration

path. It is found that the length of the integration path required

to reach numerical convergence when the sinusoidal basis

functions with the edge singularity are used is about half of that

required when the sinusoidal basis functions without the edge

singularity are used. Figs. 3 and 4 show the real and imaginary

parts of the complex resonant frequencies versus the substrate

thickness as obtained for different numbers of sinusoidal basis

functions without and with the edge singularity. The substrate

has a relative permittivity of 2.3 and the patch dimension

is 1.5 cm x 1 cm. The TMO1 mode is studied, and the

frequency is normalized with respect to the cavity-model

resonant frequency. In the calculation, N = 1 and M’ is varied

form 1 to 4. (The case of N = 1, ill = 4 is not shown in

Fig. 3). From the results in Fig. 3, good convergent solutions

are reached by using only two sinusoidal basis functions

(N = 1, M = 1) without the edge singularity. However,

as seen in Fig. 4, convergence is slow when the sinusoidal

basis functions with the edge singularity are used. To reach
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Fig. 5.
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Imaginary part of the normalized complex resonant frequency of a superstrate-loaded rectangular microstrip structure for TMO 1 and TMIO
modes; a = 6 cm, b= 5 cm, d= 0.1 cm.

convergent solutions, four basis functions (.N = 1, M = 3)

with the edge singularity need to be used. Although the

sinusoidal expansion functions with the edge condition require

a shorter path of integration to reach numerical convergence,

their use is deemed unnecessary. Similar results have also

been reported in [1], where the Chebyshev polynomials with

the edge singularity are used as basis functions. It should

be noted that the results for which N = 1 and M = 3 in
Figs. 3 and 4 are nearly the same. These convergent solutions

are in good agreement with the curve-fitting results presented

in [1]. Since the curve for which N = 1 and M = 3 in

Fig. 3 is close to that for which N = 1 and M = 1 therein,

the sinusoidal basis functions without the edge singularity

with N = 1 and M = 1 are used for the rest of the

study. This reduces the computation time. In this case, the

computation time for reaching the convergent solution of one

resonant frequency is estimated to be about 250 son an HP720

workstation.

Fig. 5 shows the imaginary part of the normalized com-

plex resonant frequency for the first two fundamental modes

TMIO and TMO1 of a superstrate-loaded rectangular microstrip

structure. In Fig. 5, all the frequencies are normalized with

respect to that of the TMO1 mode with no superstrata (t = O)

when El = 2.35. The imaginary part of the resonant frequency

indicates the radiation loss of the structure. The cases for which

El = E2 = 2.35 and 4.0 are shown. The patch dimension is

6 cm x 5 cm. The results show that the TMO1 mode radiates

most efficiently. By comparing the results of the TMO1 mode

for the cases where 61 = E2 = 2.35 and 4.0, it is seen that the

radiation efficiency is lower for the higher dielectric constants.

This is probably due to the associated surface wave effects in

substrate-superstrate layers [7], [8].

In Fig, 6, the complex resonant frequency versus the su-

perstrata thickness for different dielectric constants of (he

superstrata is shown. It is observed that when the superstri~te

thickness is increased, the real part of the complex resonant

frequency decreases monotonically. It is also seen that this

decrease lessens as the superstrata permittivity decreases. For

C2 = 1.5, the real part of the resonant frequency remains

almost constant once the superstrata thickness exceeds about

three times the substrate thickness. However, for =2 = 5.6,

the real part of the resonant frequency is still decreasing when

the superstrata thickness is 10d. The resonant frequency is

therefore easier to be stabilized when a superstrata of low

permittivity, particularly when it is lower than that of the

substrate, is placed on the top of the patch. The variation

of the imaginary part of the complex resonant frequency is

very small for t less than 5d. As the superstrata thickness

increases (t> 5d), the variation becomes significant for high

superstrata permittivities.

IV. CONCLUSIONS

A rigorous analysis is presented to obtain the complex reso-

nant frequency of the superstrate-loaded rectangular microstrip

structure. The numerical convergence for the sinusoidal basis

functions, with or without considering the edge singularity

condition, is investigated for a rectangular patch. Results

indicate that it is not necessary to consider the edge singularity

to obtain fast numerical convergence of the complex resonant

frequency for a rectangular microstrip structure. The obtained

results show that the complex resonant frequency varies mere

significantly when the superstrata permittivity is greater than
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Fig. 6. Normalized complex resonant frequency of a superstrate-loaded rectangular patch versus the superstrata thickness; Cl = 2.35, E2 = 1.5, 2.35, 4,

and 5.6; a = 6 cm, b = 5 cm, d = 0.1 cm, (a) Real part of resonant frequency. (b) Imaginary part of resonant freqirency.

that of the substrate. The TMO1 mode for the superstrate-

loaded rectangular microstrip structure is shown to be an
efficiently radiating mode.
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