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Resonance in a Superstrate-Loaded
Rectangular Microstrip Structure

Jeen-Sheen Row and Kin-Lu Wong, Member, IEEE

Abstract— The complex resonant frequency of a superstrate-
loaded rectangular microstrip structure is investigated. The study
is performed by using a full-wave analysis and Galerkin’s mo-
ment method. The numerical convergence using sinusoidal basis
functions, with and without considering the edge singularity
to expand the unknown surface current distribution on the
rectangular patch, is discussed. Numerical results for the effects
of superstrate permittivity and thickness on the complex reso-
nant frequency of the rectangular microstrip structure are also
presented.

I. INTRODUCTION

HE complex resonant frequency problem of a rectangular

microstrip patch has been recently studied in [1], where
an accurate method of determining the resonant frequency of
the rectangular microstrip structure is shown. In this paper, we
extend the study to the case of a superstrate-loaded rectangular
microstrip structure, where the superstrate layer loaded on the
microstrip structure is often imposed by design to protect
the microstrip patch antenna from environmental hazards
[2]-[4]. The study here is also based on a rigorous full-wave
analysis and Galerkin’s moment method [5]. Two different sets
of sinusoidal basis functions are used to expand the unknown
surface current distribution on the rectangular patch, one of
which takes into account the edge singularity condition. The
numerical convergence for these two different sets of basis
functions is discussed in detail. The effects of superstrate
loading on the real and imaginary parts of the complex
resonant frequency of the rectangular microstrip structure are
also presented.

II. THEORETICAL FORMULATION OF THE PROBLEM

The geometry for the superstrate-loaded rectangular mi-
crostrip structure is illustrated in Fig. 1. The patch is located on
a grounded substrate (region 1) of thickness d having relative
permittivity ;. On the top of the substrate is the superstrate
(region 2) of thickness ¢ with relative permittivity 2. Above
the superstrate is free space (region 3) with permittivity &g.
The permeability is everywhere assumed to be po. For the
analysis of the resonance problem, the transverse electric fields
at z = d are considered. Plane wave solutions proportional to
e?“t are assumed in the following theoretical treatment. The
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transverse electric fields due to the surface currents J,, and j;,
on the patch can be expressed as

R R 1 oo oo

-exp(jkzx + jkyy) dky dky (1a)
o . 1 o0 o0
Ey = ym/ / (QuoFo + QuyFy)
-exp(jkyz + jkyy) dky dky (1b)

where F, and F; are the Fourier transforms of .J, and Jy,
respectively; Quz, Quys Qyas and @y, are the elements of the
dyadic Green’s function at z = d for a grounded substrate
covered with a superstrate. These elements are found to be
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kO = W UpE&Q -

€3 = 1.0

The first subscript on ) represents the field direction while
the second subscript shows the dipole orientation. Since the
resonant frequency is defined to be the frequency at which
the field and the current can sustain themselves without an
external source, the transverse electric fields of (1a) and (1b)
must necessarily be zero on the perfectly conducting patch at
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Fig. 1. Rectangular patch in a substrate-superstrate geometry.

resonance, i.c.,

/ / (QeaFz + waFy) exp(jk-2 + jkyy) dky dky =0

(2a)

/ / (QuaFr + Qyy Fy) exp(jkox + jkyy) dky dky = 0
—00 J —oo

(2b)

The procedure for solving the above equations is based on
Galerkin’s method [5]. The unknown surface current compo-
nents J, and J,, whose Fourier transforms are F, and F,,
are expanded in terms of linear combinations of known basis
functions, i.e.,

N
Jw(.'E, y) = Z angzn(m,y) (38)
n~—1
(z,y) = Z b ym (2, Y) - (3b)
m=1

Substituting the Fourier transforms of (3) into (2) and taking
the symmetric products of the resulting equations with each
basis function, we can have the following homogeneous matrix
equation:

(Z :::) X (ngn) X (an) X — 0
(G B[] L [0] o

'_-/ / sz(_kwv_ky)
—00 J —00

'waan(km, ky) dkx dky

{s o) lo o)
75 = / / Fo(—kay ~ky)
—_0 —_—00

where

(5a)
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Fig. 2. The integration paths in the complex plane for the sinusoidal basis
functions with and without the edge singularity condition.
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k,n=1,23,---,N, lbm=1,2,3,---,M.

Since the quantities Zf,, etc., are functions of complex
frequencies and the existence of nontrivial solutions for a,,
and b, requires that

det[Z] = 0. (6)

where Z is the matrix in (4), the resonance solutions are
satisfied by complex frequencies. In choosing the set of basis
functions for solving (6), the unknown surface current density
on the patch can be expanded by the following sinusoidal
basis functions:

Jzn = sin [%ﬂ: (x + —g—)] cos [% (y + —g—) (7a)
Jym = sin [% (y + %)] cos[% (:I: + %) (7b)
or
o= 2 (e )] (52)
: (83)
(4)° -
Jym = s1n[% (y + %)] cos[fz[ (:v + %)]
= (8b)
() -2’
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Fig. 3. Normalized resonant frequency using sinusoidal basis functions without the edge singularity versus the substrate thickness; ¢; = 2.3, ¢ = 1.5 cm,
b =1 cm, t = (. (a) Real part of resonant frequency. (b) Imaginary part of resonant frequency.

The basis functions of (8), unlike those in (7), take into
consideration the edge singularity condition for the tangential
component of the surface current at the edge of the rectangular
patch. The numerical results for the above two different basis
functions are discussed in detail in the next section. The
complex resonant frequencies obtained for typical superstrate-
loaded microstrip structures are also presented.

III. NUMERICAL RESULTS AND DISCUSSION

In the evaluation of the matrix elements of (5), the double
infinite integrals are changed from the (k, k,) coordinates to

the polar coordinates (8, a), i.e.,

00 o0 oo p2m
/ / dky dky = f / Bdadp.

It is also noted that the integrands are singular when 7. or
T.. is zero. These singularities are poles that correspond to
TE or TM surface waves. Because of radiation damping, only
a complex frequency f = f. + jf; can satisfy the system
equation (6). It is necessary to evaluate the integral in the
complex plane. In order to include these poles which are
slightly above the real axis (for e/** formulation), the integral
is calculated along a straight path above the real axis with

®
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Fig. 4. Normalized resonant frequency using sinusoidal basis functions with the edge singularity versus the substrate thickness; 1 = 2.3, @ = 1.5 cm,
b =1 cm, t = 0. (a) Real part of resonant frequency. (b) Imaginary part of resonant frequency.

a height of about 1ky as shown in Fig. 2. In this case, the
effects of the surface waves are included in the calculation,
and no knowledge of the pole locations is required [6], while
the length of the integration path is decided upon by the
convergence of the numerical results. The CPU time required
to compute the integral depends on the lengthi of the integration
path. It is found that the length of the integration path required
to reach numerical convergence when the sinusoidal basis
functions with the edge singularity are used is about half of that
required when the sinusoidal basis functions without the edge
singularity are used. Figs. 3 and 4 show the real and imaginary
parts of the complex resonant frequencies versus the substrate

thickness as obtained for different numbers of sinusoidal basis
functions without and with the edge singularity. The substrate
has a relative permittivity of 2.3 and the patch dimension
is 1.5 cm x 1cm. The TMo; mode is studied, and the
frequency is normalized with respect to the cavity-model
resonant frequency. In the calculation, N = 1 and M is varied
form 1 to 4. (The case of N = 1, M = 4 is not shown in
Fig. 3). From the results in Fig. 3, good convergent solutions
are reached by using only two sinusoidal basis functions
(N =1, M = 1) without the edge singularity. However,
as seen in Fig. 4, convergence is slow when the sinusoidal
basis functions with the edge singularity are used. To reach
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Fig. 5.
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Imaginary part of the normalized complex resonant frequency of a superstrate-loaded rectangular microstrip structure for TMg; and TMig

modes; a =6 cm, b=5cm, d = 0.1 cm.

convergent solutions, four basis functions (N = 1, M = 3)
with the edge singularity need to be used. Although the
sinusoidal expansion functions with the edge condition require
a shorter path of integration to reach numerical convergence,
their use is deemed unnecessary. Similar results have also
been reported in [1], where the Chebyshev polynomials with
the edge singularity are used as basis functions. It should
be noted that the results for which N = 1 and M = 3 in
Figs. 3 and 4 are nearly the same. These convergent solutions
are in good agreement with the curve-fitting results presented
in [1]. Since the curve for which N = 1 and M = 3 in
Fig. 3 is close to that for which N = 1 and M = 1 therein,
the sinusoidal basis functions without the edge singularity
with N = 1 and M = 1 are used for the rest of the
study. This reduces the computation time. In this case, the
computation time for reaching the convergent solution of one
resonant frequency is estimated to be about 250 s on an HP720
workstation.

Fig. 5 shows the imaginary part of the normalized com-
plex resonant frequency for the first two fundamental modes
TM; and TMy; of a superstrate-loaded rectangular microstrip
structure. In Fig. 5, all the frequencies are normalized with
respect to that of the TMg; mode with no superstrate (¢ = 0)
when e, = 2.35. The imaginary part of the resonant frequency
indicates the radiation loss of the structure. The cases for which
g1 = €9 = 2.35 and 4.0 are shown. The patch dimension is
6 cm x 5 cm. The results show that the TMg; mode radiates
most efficiently. By comparing the results of the TMg; mode
for the cases where €1 = 9 = 2.35 and 4.0, it is seen that the
radiation efficiency is lower for the higher dielectric constants.
This is probably due to the associated surface wave effects in
substrate-superstrate layers [7], [8].

In Fig. 6, the complex resonant frequency versus the su-
perstrate thickness for different dielectric constants of the
superstrate is shown. It is observed that when the superstrate
thickness is increased, the real part of the complex resonant
frequency decreases monotonically. It is also seen that this
decrease lessens as the superstrate permittivity decreases. For
€2 = 1.5, the real part of the resonant frequency remains
almost constant once the superstrate thickness exceeds about
three times the substrate thickness. However, for €2 = 5.6,
the real part of the resonant frequency is still decreasing when
the superstrate thickness is 10d. The resonant frequency is
therefore easier to be stabilized when a superstrate of low
permittivity, particularly when it is lower than that of the
substrate, is placed on the top of the patch. The variation
of the imaginary part of the complex resonant frequency is
very small for ¢ less than 5d. As the superstrate thickness
increases (¢t > 5d), the variation becomes significant for high
superstrate permittivities.

IV. CONCLUSIONS

A rigorous analysis is presented to obtain the complex reso-
nant frequency of the superstrate-loaded rectangular microstrip
structure. The numerical convergence for the sinusoidal basis
functions, with or without considering the edge singularity
condition, is investigated for a rectangular patch. Results
indicate that it is not necessary to consider the edge singularity
to obtain fast numerical convergence of the complex resonant
frequency for a rectangular microstrip structure. The obtained
results show that the complex resonant frequency varies more
significantly when the superstrate permittivity is greater than
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Fig. 6. Normalized complex resonant frequency of a superstrate-loaded rectangular patch versus the superstrate thickness; ¢; = 2.35, g2 = 1.5, 2.35, 4,
and 5.6; a =6 cm, b =5 cm, d = 0.1 cm. (a) Real part of resonant frequency. (b) Imaginary part of resonant frequency.

that of the substrate. The TMy; mode for the superstrate-
loaded rectangular microstrip structure is shown to be an
efficiently radiating mode.
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